Trigonometry
y = a sin (b x + c)
y = a sin x
The function y = sin (b x)
y = sin (x + c) y = a sin (b x + c)
y = a cos (b x + c) y = a sin (b x + c) and  y = a cos (b x + c), examples  The sine function and the cosine function graphs and relations The tangent function and the cotangent function graphs and relations The cosecant function and the secant function graphs and relations
The cosecant function  y = csc x
The graph of the cosecant function
The secant function  y = sec x
The graph of the secant function Inverse Trigonometric Functions or Arc-functions and their Graphs
Inverse functions The arc-sine function and the arc-cosine function
The arc-sine function  y = arcsin x or  y = sin-1x
The arc-cosine function  y = arccos x or y = cos-1x
The graph of the arc-sine function and the arc-cosine function The arc-tangent function and the arc-cotangent function
The arc-tangent function  y = arctan x or  y = tan-1x
The arc-cotangent function  y = arccot x or y = cot-1x
arc-tangent function and the arc-cotangent function The arc-cosecant function and the arc-secant function
arc-cosecant and the arc-secant function

 Trigonometric Equations Basic Trigonometric Equations
The equation  sin x = a
cos x = a
tan x = a
The equation  cot x = a sin (bx + c) = m,  -1 <  m < 1,   cos (bx + c) = m,  -1 <  m < 1,
tan (bx + c) = m   and   cot (bx + c) = mwhere b, c and m are real numbers.
sin (bx + c) = m,  -1 <  m < 1, example
cos (bx + c) = m,  -1 <  m < 1, example
tan (bx + c) = m, example
cot (bx + c) = m, example a cos x + b sin x = c
Introducing an auxiliary angle method
Introducing an auxiliary angle method example f · g = 0 Trigonometric equations of quadratic form
Introducing new unknown  t = tan x/2
Introducing new unknown  t = tan x/2 example Homogeneous equations in sin x and cos x
Homogeneous equations of first degree  a sin x + b cos x = 0
Homogeneous equations of second degree  a sin2 x + b sin x cos x + c cos2 x = 0 The basic strategy for solving trigonometric equations
Trigonometric equations examples    