Combinatorics - Combinatorial Analysis
    Permutations
      Permutations
      Permutations of n objects some of which are the same
Permutations
Given a set of n different elements or objects. Any distinct ordered arrangement of the n elements is called permutation.
The total number of permutations for n elements is
  P(n) = n!.  
Example:   Given is the sequence of four digits 1, 2, 3, 4. Write all possible ordered arrangements or permutations of the 4 digits.
Solution:  The number of permutations of the given 4 digits,  P(4) = 4! = 4 3 2 1 = 24.
The permutations are,
                                1, 2, 3, 4         2, 1, 3, 4         3, 1, 2, 4         4, 1, 2, 3
                                1, 2, 4, 3         2, 1, 4, 3         3, 1, 4, 2         4, 1, 3, 2
                                1, 3, 2, 4         2, 3, 1, 4         3, 2, 1, 4         4, 2, 1, 3
                                1, 3, 4, 2         2, 3, 4, 1         3, 2, 4, 1         4, 2, 3, 1
                                1, 4, 2, 3         2, 4, 1, 3         3, 4, 1, 2         4, 3, 1, 2
                                1, 4, 3, 2         2, 4, 3, 1         3, 4, 2, 1         4, 3, 2, 1.
Permutations of n objects some of which are the same
The number of permutations of n elements some groups of which are the same
   
where, k1, k2, . . . , km denotes each group with identical elements.
Example:   How many different 7-letter words can be formed from the word GREETER?
Solution: 
since the letter R repeats twice and E repeats 3 times.
Example:   How many four-digit numbers can be written with all of the digits 2, 3, 3, 4 and write them in increasing order.
Solution:  In the given sequence of four digits, the digit 3 repeat twice, so
the 12 four-digit numbers written in increasing order are,
                                2 3 3 4         3 2 3 4         4 2 3 3
                                2 3 4 3         3 2 4 3         4 3 2 3
                                2 4 3 3         3 3 2 4         4 3 3 2.
                                                   3 3 4 2
                                                   3 4 2 3
                                                   3 4 3 2
Intermediate algebra contents
Copyright 2004 - 2020, Nabla Ltd.  All rights reserved.