Arithmetic sequences examples
Example:  Find the sum of all natural numbers greater than 30 and smaller than 330 whose last digit is 1.
Solution:    Given numbers form the sequence   31, 41, 51, . . . , 291, 301, 311, 321.
Therefore,   a1 = 31,   an = 321  and  d = 10
                      as       an = a1 + (n - 1) · d
                   then     321 = 31 + (n - 1) · 10                                 Sn = (n/2) · (a1 + an)
                              290 = (n - 1) · 10                                         S30 = 30/2 · (31 + 321)
                            n - 1 = 29,     n = 30.                                     S30 = 15 · 352 = 5280.
Example:  Find the first term and number of terms of an arithmetic sequence with an = 15Sn = 64 and common difference d = 2.
Solution:  Use the formulas for an and Sn to form a system of two equations in two unknowns, 
  (1)  an = a1 + (n - 1) · d
  (2)  Sn =  (n/2) · [2a1 + (n - 1) · d]
                                                     
  (1)  a1 + (n - 1) · 2 = 15,                 =>            a1 = 17 - 2n
  (2)   (n/2) · [2a1 + (n - 1) · 2] = 64,    =>            n · (a1+ n - 1) = 64
                     (1)   a1 = 17 - 2n          =>    (2)     n2 + a1n - n = 64
                                                                            n2 + (17 - 2n) · n - n = 64,
                                                                            n2 - 16n + 64 = 0,
                                                                            n1,2 = 8 ± Ö 64 - 64,    n = 8,   a1 = 17 - 2 · 8 = 1.
Therefore, the sequence is  1, 3, 5, 7, 9, 11, 13, 15, . . . , where  a8 = 15 and  S8 = 64.
Example:  Which arithmetic sequence has the property that the sum of its first five terms is 35 and the sum of the second and the sixth term is 20.
Solution:  Use the formulas for Sn and  ato form a system of two equations, 
  Sn =  (n/2) · [2a1 + (n - 1) · d]                    =>    (1)   (5/2) · [2a1 + 4d] = 35,           a1 + 2d = 7
  an = a1 + (n - 1) · d,         a2 + a6 = 20    =>    (2)    (a1 + d) + (a1 + 5d) = 20,      2a1 + 6d = 20
             (2)   a1 + 3d = 10
                               (2) - (1)    (a1 + 3d) - (a1 + 2d) = 10 - 7,      d = 3
                              (2)   a1 + 3d = 10   =>   a1 = 10 - 3d = 10 - 3 · 3 = 1,    a1 = 1.
Thus, the sequence is  1, 4, 7, 10, 13, 16, 19, . . . 
Example:  How many natural numbers, divisible by 7, lie between 0 and 100, and what is their sum.
Solution:  The sequence of numbers divisible by 7 is;   7, 14, 21, 28, . . . , 84, 91, 98
and since   an = a1 + (n - 1) · d,    then     98 = 7 + (n - 1) · 7 | ¸ 7
                Sn = n/2 · (a1 + an),                    n = 14,
                S14 = 14/2 · (7 + 98) = 7 · 105 = 735.
Example:  Find n and Sn of an arithmetic sequence if given are;  a1, an, and d.
Solution:  Since,   an = a1 + (n - 1) · d    then    an - a1 = (n - 1) · dor   n - 1 = (an - a1) / d
                                                                                                                         n = (an - a1 + d) / d
                                                                     and    Sn = (n/2) · (a1 + an)
by substituting    n = (an - a1 + d) / d    obtained is  Sn = (an - a1 + d) · (a1 + an) / (2d)
Example:  Find d and n of an arithmetic sequence if given are;  a1, an, and Sn.
Solution:  Since,   an = a1 + (n - 1) · d           and          Sn = (n/2) · (a1 + an)
                              d = (an - a1) / (n - 1)        <=            n = (2Sn) / (a1 + an)
                              d = (an - a1) / [(2Sn) / (a1 + an) - 1] = (an2 - a12) / (2Sn - a1 - an)
Example:  Derive the formula for the nth odd natural number and the sum of the first n odd natural numbers.
Solution:  The sequence of odd natural numbers is   1, 3, 5, 7, . . . , an, . . . 
               using       an = a1 + (n - 1) · d 
                              an = 1 + (n - 1) · 2         and since         Sn = (n/2) · (a1 + an)
                              an = 2n - 1      =>   Sn           then         Sn = (n/2) · [1 + (2n - 1)]   so  Sn = n2.
Example:  In a sequence of natural numbers divisible by 7 find the one that equals the one seventeenth of the sum of all natural numbers that precede this one.
Solution:  A natural number divisible by 7 is 7n, where n Î N, so the sequence of the numbers is
   7, 14, 21, 28, 35, 42, 49,  . . . 
and since the formula for the sum of the first n natural numbers    Sn n · (n + 1)/2,  and the sum of natural numbers that precede the number divisible by 7 is,    (7n + 1)[(7n - 1) + 1] / 2 then, the following equation meets the given condition
7n = (1/17) · 7n(7n - 1) / 2    thus,   7n = 35.
Pre-calculus contents K
Copyright © 2004 - 2020, Nabla Ltd.  All rights reserved.