Polar Coordinate System
      Polar and Cartesian coordinates relations
         Conversion from polar to rectangular coordinates
         Conversion from rectangular to polar coordinates
      Equation of a circle in polar form
         General equation of a circle in polar coordinates
         Polar equation of a circle with a center on the polar axis running through the pole
         Polar equation of a circle with a center at the pole
Polar coordinate system
The polar coordinate system is a two-dimensional coordinate system in which each point P on a plane is determined by the length of its position vector r and the angle q between it and the positive direction of the x-axis, where 0 < r < + oo  and  0 < q < 2p.
Polar and Cartesian coordinates relations,
Note, since the inverse tangent function (arctan or tan-1) returns values in the range  -p/2 < q < p/2, then
for points lying in the 2nd or 3rd quadrant
and for points lying in the 4th quadrant
Example:   Convert Cartesian coordinates (-1, -3) to polar coordinates.
Solution:
  and since the point lies in the 3rd quadrant, then
 
Equation of a circle in polar form
General equation of a circle in polar coordinates
The general equation of a circle with a center at 
(r0, j) and radius R.
Using the law of cosine,
r2 + r02 - 2rr0 cos(q - j) = R2
Polar equation of a circle with a center on the polar axis running through the pole
Polar equation of a circle with radius R and a center on the polar axis running through the pole O (origin).
Since   then,
r = 2R cosq
Polar equation of a circle with a center at the pole
Since,   r2 = x2 + y2   and   x2 + y2 = R2  then r = R  
is polar equation of a circle with radius R and a center at the pole (origin).
Example:  Convert the polar equation of a circle  r = -4 cosq  into Cartesian coordinates.
Solution:       As,    r = -4 cosq
                   then    r2 = -4r cosq,
and by using polar to Cartesian conversion formulas,  r2 = x2 + y2   and   x = r cosq
obtained is         x2 + y2 = -4x
                 x2 + 4x + y2 = 0
        or      (x + 2)2 + y2 = 4
the equation of a circle with radius R = 2 and the
center (-2, 0).
Pre-calculus contents B
Copyright 2004 - 2020, Nabla Ltd.  All rights reserved.