54
 
Trigonometry
 Trigonometric equations
 Trigonometric equations of quadratic form

The trigonometric equation of the quadratic form  [F (x)]2 + p · F (x) + q = 0, where F (x) denotes given trigonometric function, by substituting  F (x) = u  becomes a quadratic equation 

returned into substitutions F (x) = u1 and  F (x) = u2  lead to the known basic trigonometric equation.

  Example:  Find the solution set for the equation,  3sin x = 2cos2 x.

  Solution:  Using known identity we write  3sin x - 2 · (1 - sin2 x) = 0,  and by plugging  sin x = u

Therefore,  sin x = 1/2,   x = 30° + k · 360°,  kÎ Z,  and   x = 150° + k · 360°,  kÎ Z,
while the equation sin x = - 2  has no solutions since  - 2 is not in the range of the sine function.
 Thus, the solution set of the given equation is  {30° + k · 360°,  150° + k · 360° ,  kÎ Z}.
 Equations of the type   a cos x + b sin x = c
To solve the trigonometric equations which are linear in sin x and cos x, and where, a, b, and c are real numbers we can use the two methods,
a)  introducing an auxiliary angle, and   b)  introducing new unknown.
 a)  Introducing an auxiliary angle method

Consider the constants a and b as rectangular coordinates of a point expressed by polar coordinates

  (r, j),  then,    a = r cos j    and    b = r sin j,

By substituting for a and b in the given equation
a · cos x + b · sin x = c
obtained is,   r cos x · cos j + r sin x · sin j = or
using addition formula yields,
obtained is the basic trigonometric equation whose solution is known.
Note that the given equation,  a cos x + b sin x = c  will have a solution if
it follows that the constants, a, b and c should satisfy relation  c2 < a2 + b2.
 Introducing an auxiliary angle method example
  Example:  Solve the equation,  sin x + Ö3 · cos x = 1.
Solution:  Comparing corresponding parameters of the given equation with a cos x + b sin x = c it follows, a = Ö3, b = 1 and  c = 1.
By substituting given quantities to the basic equation
or  x - 30° = + 60° + k · 360°   thus,   x = 90° + k · 360°  and  x = - 30° + k · 360°, kÎ Z.
The same solution can be obtained using following procedure, from  sin x + Ö3 · cos x = 1
       and      a cos x + b sin x = c | ¸ b
that means that we can introduce an auxiliary angle j that is
sin x · sin 30° + cos x · cos 30° = sin 30°,     cos (x - 30°) = 1/2
and this is the same basic equation obtained above.
 b)  Introducing new unknown  t = tan x/2
If in the equation a cos x + b sin x = c we substitute the sine and cosine functions by tan x/2 = t  that is,
the equation becomes  and after rearranging (a + c) t2 - 2b t + (c - a) = 0.
Obtained quadratic equation will have real solutions t1,2 if its discriminant is greater then or equal to zero,
that is if   (-2b)2 - 4 (a + c)(c - a) > 0   or   c2 < a2 + b2,   which is earlier mentioned condition.
If this condition is satisfied, the solutions, t1 and t2 can be substituted into tan x/2 = t1 and  tan x/2 = t2.
Thus, obtained are the basic trigonometric equations.
 Introducing new unknown  t = tan x/2 example
  Example:  Solve the equation,  5 sin x - 4 cos x = 3.

Solution:  Given equation is of the form a cos x + b sin x = c therefore parameters,  a = - 4b = 5 and   c = 3, after introducing new unknown tan x/2 = t and substituting values of the parameters into equation

(a + c) · t2 - 2b · t + (c - a) = 0    gives   (- 4 + 3) · t2 - 2 · 5 · t + [3 - (- 4)] = 0
or      t2 + 10t - 7 = 0,    t1,2  = - 5 + Ö25 + 7 = - 5 ± 4Ö2.
Obtained values for variable t we plug into substitutions,
     tan x/2 = t1,   x/2 = tan-1 (t1 or  x = 2arctan(- 5 - 2)
                                                        x = 2 (- 84°3821 + k · 180°) = - 169°1642 + k · 360°,
     tan x/2 = t2,   x/2 = tan-1 (t2 or  x = 2arctan(- 5 + 2)
                                                        x = 2 · (33°1756 + k · 180°) = 66°3553 + k · 360°.

The same result we obtain using the method of introducing an auxiliary angle j. Plug given parameters      a = - 4, b = 5 and c = 3  into  tan j = b/a,   tan j = 5/(- 4),  j = -51°2024,  cos j = 0.624695.

 
 
 
 
 
 
 
Contents F
 
 
 
 
Copyright © 2004 - 2020, Nabla Ltd.  All rights reserved.