52
 
Trigonometry
 Trigonometric equations
 The equations,  sin (bx + c) = m,  -1 <  m < 1,   cos (bx + c) = m,  -1 <  m < 1,
                         tan (bx + c) = m  and  cot (bx + c) = m,  where b, c and m are real numbers.

 The given equations can be written as F(bx + c) = m  where F substitutes a trigonometric function, x is an arc to be calculated and m is a value of a given trigonometric function.

To every trigonometric function we can determine an arc, a + k · P of which function value equals m that is F(a + k · P) = m, where a = x0  is the basic solution, and P is the period, then

F(bx + c) = F(a + k · P or  bx + c = a + k · P,  thus   

Thus, from obtained general solution we can write a common solutions for every given equation,

 The equation  sin (bx + c) = m,  -1 <  m < 1 example
 Example:  Solve the equation,

 Solution:  Rewrite the equation to the form  sin (bx + c) = m,  so  sin (2x + p/6) = - 1/2

An alternative but similar solution can be obtained by substituting the values of, b, c and  m, into

x0 = a  and  x0 = p - a  and to the common solution written above
 The equation  cos (bx + c) = m,  -1 <  m < 1, example
  Example:  Find the solutions of the equation,  2cos (4x - 30°) + Ö3 = 0.
  Solution:  Rewrite the equation to the form  cos (bx + c) = m,  that is  cos (4 x - 30°) = - Ö3/2
it follows that    cos (4 x - 30°) =  cos (+ 150° + k · 360°)
             and             4 x - 30°+ 150° + k · 360°
     therefore,       x = 45° + k · 90°   and    x = - 30° + k · 90°,  kÎ Z.
The same results we get by substituting the values, b = 4c = - 30°  and  m = - Ö3/2, into
x0 = a = cos-1 m = cos-1 (- Ö3/2)  = 150°  and  x0- a = -150°
then, using the common solution formulas obtained are
 
 
 
 
 
 
 
Contents F
 
 
 
 
Copyright © 2004 - 2020, Nabla Ltd.  All rights reserved.