Polynomial and/or Polynomial Functions and Equations
      The general form or translatable form of the polynomial
         The coordinates of translations and the coefficients of the source function formulas
         Quadratic function formulas
         Cubic function formulas
         Quartic function formulas
         Quintic function formulas
         Sextic function formulas
The general form or translatable form of the polynomial
The coordinates of translations and the coefficients of the source function formulas
Therefore, every given polynomial written in the general form can be transformed into translatable form by calculating the coordinates of translations x0 and y0 and the coefficients a of its source function.
Thus, for n = 2,  quadratic   y = a2x2 + a1x + a0   or    y - y0 = a2(x - x0)2,  where
       by setting  x0 = 0 and  y0 = 0,        y = a2x2    - the source quadratic.
For n = 3,  cubic function  y = a3x3 + a2x2 + a1x + a0   or   y - y0 = a3(x - x0)3 + a1(x - x0),
       by setting  x0 = 0 and  y0 = 0,      y = a3x3 + a1x   - the source cubic function, where
For n = 4,  quartic function  y = a4x4 + a3x3 + a2x2 + a1x + a0
                          or    y - y0 = a4(x - x0)4 + a2(x - x0)2 + a1(x - x0),
       by setting  x0 = 0 and  y0 = 0,    y = a4x4 + a2x2 + a1x   - the source quartic function, where
For n = 5,  quintic function   y = a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0
                           or   y - y0 = a5(x - x0)5 + a3(x - x0)3 + a2(x - x0)2 + a1(x - x0)   
       by setting  x0 = 0 and  y0 = 0,    y = a5x5 + a3x3 + a2x2 + a1x   - the source quintic function, where
For n = 6,  sextic function  y = a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0
                          or   y - y0 = a6(x - x0)6 + a4(x - x0)4 + a3(x - x0)3 + a2(x - x0)2 + a1(x - x0)
       by setting  x0 = 0 and  y0 = 0,    y = a6x6 + a4x4 + a3x3 + a2x2 + a1x   - the source sextic, where
Functions contents C
Copyright 2004 - 2020, Nabla Ltd.  All rights reserved.