Trigonometry
     Trigonometric Equations
      Trigonometric equations examples
Trigonometric equations examples
Example:  Solve the equation,  3 sin (x + 70°) + 5 sin (x + 160°) = 0.
Solution:  Given equation can be written as
4 sin (x + 70°) - sin (x + 70°) + 4 sin (x + 160°) + sin (x + 160°) = 0
                                         or    4 [sin (x + 70°) + sin (x + 160°)] = sin (x + 70°) - sin (x + 160°)
then, by using sum to product formula
   
                                                         cot (- 45°) · tan (x + 115°) = 1/4   or   tan (x + 115°) = - 1/4,
therefore, the solution   x + 115° = tan-1 ,    x = -115° + tan-1 (-1/4) = - 129°210 + k · 180°.
Example:  Find the solution of the equation,  2 sin (x + 60°) · cos x = 1.
Solution:  Applying products as sums formula
2 · (1/2) [sin (x + 60° + x) + sin (x + 60° - x)] = 1   or   sin (2x + 60°) + sin  60° = 1
then   sin (2x + 60°) = 1 - Ö3/2,         2x + 60° = sin-1(1 - Ö3/2) + k · 360°
                                            and        2x + 60° = 180° - sin-1(1 - Ö3/2) + k · 360°
so, the solution is    2x = - 60° + sin-1(1 - Ö3/2) + k · 360°,       x = - 26°91 + k · 180°,
                             2x 120° - sin-1(1 - Ö3/2) + k · 360°,       x 56°91 + k · 180°,  k Î Z.
Example:  Find the solution of the equation,
Solution:  Using identities
given equation becomes  2 · (1 + cos x) - Ö3 · cot x/2 = 0,
therefore,      1 + cos x = 0,       cos x = - 1,      x = p + k · 2p,
       and    2sin x - Ö3 = 0,      sin x = Ö3/2,      x = p/3 + k · 2p   and   x 2p/3 + k · 2p,  k Î Z.
Example:  Solve the equation,  cos 2x + cos 6x - cos 8x - 1 = 0.
Solution:  To the first two terms apply the sum to product formula and remaining two terms transform using
known identity, thus
 and since    1 + cos 2x = 2cos 2 x   then,     1 + cos 8x = 2cos 2 4x   plugging into the given equation
2cos 4x · cos 2x - 2cos 2 4x = 0    or   2cos 4x · (cos 2x - cos 4x) = 0
 it follows that  4cos 4x · sin 3x · sin x = 0   meaning,   cos 4x = 0,   sin 3x = 0  and/or  sin x = 0.  Since
sin 3x = sin (x + 2x) = sin x · cos 2x + cos x · sin 2x = sin x · (cos 2 x - sin 2 x) + cos x · 2sin xcos x
             = sin x · (1 - 2sin 2 x) + 2sin x · (1 - sin 2 x)  = 3sin x - 4sin 3 x,
solutions of the equation  sin x = 0  are included in the solutions of  sin 3x = 0.
        If  sin x = then,   sin 3x = 3sin x - 4sin 3 x = sin x · (3 - 4sin 2 x) = 0.
Therefore, the solution set of the given equation is the union of the solutions of each of the equations, that is
cos 4x = 0,    4x = + p/2 + k · 2p,     x + p/8 + k · p/2 
                   and           sin 3x = 0,     3x = k · p,       x = k · p/3,   k Î Z.
Pre-calculus contents G
Copyright © 2004 - 2020, Nabla Ltd.  All rights reserved.