Trigonometry
     Trigonometric Equations
      Homogeneous Equations in sin x and cos x
         Homogeneous equations of first degree  a×sin x + b×cos x = 0
         Homogeneous equations of second degree  a sin2 x + b sin x · cos x + c cos2 x = 0
      The Basic Strategy for Solving Trigonometric Equations
         Trigonometric equations examples
Homogeneous equations in sin x and cos x
An equation is said to be homogeneous if all its terms are of the same degree. 
Homogeneous equations of first degree  a sin x + b cos x = 0
Divide given equation by cos x to obtain 
 a tan x + b = 0   or   tan x = - b/a   the basic equation
whose solution is     x = tan-1 (- b/a) + k · p    or    x = arctan (- b/a) + k · p,  k Î Z.
Example:  Solve the equation,  - sin x + Ö3 · cos x = 0.
Solution:  Dividing given equation by  - cos x obtained is
tan x = Ö3,     x = tan-1Ö3  + k · p = p/3 + k · p,  k Î Z.
Homogeneous equations of second degree  a sin2 x + b sin x · cos x + c cos2 x = 0
After division of the given equation by cos2 x obtained is quadratic equation
 a tan2 x + b tan x + c = 0
which is explained in the previous section.
The next example shows that the equation  a sin2 x + b sin x · cos x + c cos2 x = d  is also homogeneous.
Example:  Find the solution set for the equation,  5 sin2 x + sin x · cos x + 2 cos2 x = 4.
Solution:  Given equation is equivalent to the equation
5 sin2 x + sin x · cos x + 2 cos2 x = 4 · (sin2 x + cos2 x),   since  sin2 x + cos2 x = 1
which, when simplified becomes
sin2 x + sin x · cos x - 2 cos2 x = 0  - the homogeneous equation of the second degree.
Division by cos2 x gives,
   thus,    (tan x)1 = - 2,    x = tan-1(- 2) = - 63°2605 + k · 180°,
                                          (tan x)2 1,      x = tan-1 1 = 45° + k · 180°,  k Î Z.
The basic strategy for solving trigonometric equations
When solving trigonometric equations we usually use some of the following procedures,
 - apply known identities to modify given equation to an equivalent expressed in terms of one function,
 - rearrange the given equation using different trigonometric formulae to an equivalent, until you recognize one 
   of the known types.
Trigonometric equations examples
Example:  Solve the equation,  3 sin (x + 70°) + 5 sin (x + 160°) = 0.
Solution:  Given equation can be written as
4 sin (x + 70°) - sin (x + 70°) + 4 sin (x + 160°) + sin (x + 160°) = 0
                                         or    4 [sin (x + 70°) + sin (x + 160°)] = sin (x + 70°) - sin (x + 160°)
then, by using sum to product formula
   
                                                         cot (- 45°) · tan (x + 115°) = 1/4   or   tan (x + 115°) = - 1/4,
therefore, the solution   x + 115° = tan-1 ,    x = -115° + tan-1 (-1/4) = - 129°210 + k · 180°.
Example:  Find the solution of the equation,  2 sin (x + 60°) · cos x = 1.
Solution:  Applying products as sums formula
2 · (1/2) [sin (x + 60° + x) + sin (x + 60° - x)] = 1   or   sin (2x + 60°) + sin  60° = 1
then   sin (2x + 60°) = 1 - Ö3/2,         2x + 60° = sin-1(1 - Ö3/2) + k · 360°
                                            and        2x + 60° = 180° - sin-1(1 - Ö3/2) + k · 360°
so, the solution is    2x = - 60° + sin-1(1 - Ö3/2) + k · 360°,       x = - 26°91 + k · 180°,
                             2x 120° - sin-1(1 - Ö3/2) + k · 360°,       x 56°91 + k · 180°,  k Î Z.
Functions contents D
Copyright © 2004 - 2020, Nabla Ltd.  All rights reserved.