|
Integral
calculus |
|
The
indefinite integral |
Substitution rule |
Evaluating the indefinite integrals using substitution
rule examples
|
Evaluating the indefinite integrals using substitution
rule
solutions
|
|
|
|
|
|
|
Substitution
rule |
Let
f
and g
are differentiable, with range of g
contained in the domain of f,
and let F
be antiderivative of f such
that F'
(u)
= f (u) where u
= g (x), then |
 |
by
applying the chain rule |
F(g (x))' =
F' (g (x)) g' (x) = f
(g
(x)) g' (x) . |
Thus,
obtained is substitution rule |
 |
|
Evaluating
indefinite integrals using substitution rule, examples
|
Evaluate
the following indefinite integrals using substitution rule |
21. |
 |
22. |
 |
|
23. |
 |
24. |
 |
|
25. |
 |
26. |
 |
|
27. |
 |
28. |
 |
|
29. |
 |
30. |
 |
|
|
Evaluating the indefinite integrals using substitution rule,
solutions
|
|
Example:
21.
Evaluate |
 |
|
|
|
Example:
22.
Evaluate |
 |
|
|
|
Example:
23.
Evaluate |
 |
|
|
|
Example:
24.
Evaluate |
 |
|
|
|
Example:
25.
Evaluate |
 |
|
|
|
Example:
26.
Evaluate |
 |
|
|
|
Example:
27.
Evaluate |
 |
|
|
|
Example:
28.
Evaluate |
 |
|
|
|
Example:
29.
Evaluate |
 |
|
|
This
integral can also be solved using decomposition of rational function
into a sum of partial fractions.
|
|
|
Example:
30.
Evaluate |
 |
|
|
|